FeatureEngineering
最后更新于
这有帮助吗?
特征工程(Feature Engineering) 本质是一项工程活动,目的是最大限度地从原始数据中提取特征,以供算法和模型使用。
通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题:
不属于同一量纲: 即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。
信息冗余: 对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。二值化可以解决这一问题。
定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。:假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用哑编码后的特征可达到非线性的效果。
存在缺失值:缺失值需要补充。
信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。
无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化和区间缩放法。
标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。
区间缩放法利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0, 1]等。
标准化需要计算特征的均值和标准差,公式表达为:
区间缩放法的思路有多种,常见的一种为利用两个最值进行缩放,公式表达为:
简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score
的方法,将样本的特征值转换到同一量纲下。归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为单位向量。
规则为l2的归一化公式如下。
定量特征二值化的核心在于设定一个阈值,大于阈值的赋值为1,小于等于阈值的赋值为0,公式表达如下。
常见的数据变换有
基于多项式
基于指数函数
基于对数函数
4个特征,度为2的多项式转换公式如下。
当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:
特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。
根据特征选择的形式又可以将特征选择方法分为3种:
Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。
使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。
使用相关系数法,先要计算各个特征对目标值的相关系数以及相关系数的P值。
经典的卡方检验是检验定性自变量对定性因变量的相关性。假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距,构建统计量:
经典的互信息也是评价定性自变量对定性因变量的相关性的,互信息计算公式如下:
为了处理定量数据,最大信息系数法被提出。
递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。
使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。
树模型中GBDT也可用来作为基模型进行特征选择。
当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。
不难发现,。
实际上,,所以没选到的特征不代表不重要。故,可结合L2惩罚项来优化。具体操作为:若一个特征在L1中的权值为1,选择在L2中权值差别不大且在L1中权值为0的特征构成同类集合,将这一集合中的特征平分L1中的权值,故需要构建一个新的逻辑回归模型。
常见的降维方法除了以上提到的基于L1惩罚项的模型以外,另外还有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:。所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法。