Introduction
Esper的处理模型是持续的: 根据语句对事件流, 试图, 过滤器和输出率, 引擎在处理该语句事件的同时更新监听器(update listeners)和/或语句的订阅者会接收到更新数据.
监听器的接口是com.espertech.esper.client.UpdateListener
.
Esper引擎通过把结果放到com.espertech.esper.client.EventBean
实例中, 来更新监听器. 典型的监听器实现通过getter方法查询EventBean实例, 以获取语句生成的结果.
EventBean接口的get方法可以被用来通过名称(name)检索结果列. 提供给get方法的属性名(property name)可以查询对象的嵌套, 索引, 数组属性.
EventBean接口的getUnderlying
方法允许更新监听器获取underlying event object
.
Insert Stream
我们来看一下一个非常简单的EPL语句的输出. 该语句选择一个事件流, 不使用数据窗口(data windows), 也不用过滤器:
select * from Withdrawal
该语句选择所有的Withdrawal事件. 每当引擎处理Withdrawal类型的事件, 或者Withdrawal子类型的事件时, 都会调用所有的更新监听器, 把新事件交给每一个该语句的监听器.
术语插入流(inset stream)表示新事件到达并且进入了一个数据窗口或集合. 上述例子中的Insert Stream是到达的Withdrawal事件, 并且被当做新事件发送给监听器.
下面的图展示了1-6系列Withdrawal事件依次到达. 括号中的数字是Withdrawal数量, 一个事件属性, 用来在接下的例子中对事件进行过滤.
上面的例子中, Esper引擎只对语句的监听者推送了new events, 没有old events.
示例代码
EsperInsertStream.java
package com.bovenson.esper;
import com.espertech.esper.client.EPServiceProvider;
import com.espertech.esper.client.EPServiceProviderManager;
import com.espertech.esper.client.EPStatement;
public class EsperInsertStream {
public static void main(String args[]) {
EPServiceProvider engine = EPServiceProviderManager.getDefaultProvider();
engine.getEPAdministrator().getConfiguration().addEventType(EsperSimpleEventBean.class);
String epl = "select * from " + EsperSimpleEventBean.class.getName();
EPStatement statement = engine.getEPAdministrator().createEPL(epl);
// 添加 update listener
statement.addListener((newData, oldData) -> {
if (newData != null) {
String name = (String) newData[0].get("name");
String data = (String) newData[0].get("data");
System.out.println(String.format("newData info - Name: %s, Data: %s", name, data));
} else {
System.out.println("newData is null.");
}
if (oldData != null) {
String name = (String) oldData[0].get("name");
String data = (String) oldData[0].get("data");
System.out.println(String.format("oldData info - Name: %s, Data: %s", name, data));
} else {
System.out.println("oldData is null.");
}
});
// 发送事件
engine.getEPRuntime().sendEvent(new EsperSimpleEventBean("Mike", "Good Bye."));
}
static class EsperSimpleEventBean {
private String name;
private String data;
EsperSimpleEventBean(String name, String data) {
this.name = name;
this.data = data;
}
public String getName() {
return name;
}
public String getData() {
return data;
}
}
}
输出:
newData info - Name: Mike, Data: Good Bye.
oldData is null.
Insert and Remove Stream
长度窗口指示引擎仅保留流的最后N个事件。下面的语句对Withdrawal事件流用了长度窗口. 该声明用于说明数据窗口和进入离开数据窗口事件的概念.
select * from Withdrawal#length(5)
该语句中, 长度窗口是5个事件. Esper引擎把所有到达的Withdrawal事件放到这个长度窗口中. 当长度窗口被塞满之后, 最先到达的Withdrawal事件被推出该窗口. Esper引擎告知监听器: 所有进入长度窗口的事件为new events, 所有离开长度窗口的事件为old events.
术语insert stream
表示新事件到达, 术语remove stream
表示事件离开数据窗口或者更改集合数值. 在这个例子中, Withdrawal事件离开长度窗口, 并且该事件被当做old events推送给监听者.
下图阐述了当事件到达时, 长度窗口(length window)内容如何改变, 以及展示了事件被推送更新监听器.
像之前一样, 所有新到达的事件被当做new events推送给监听器. 另外, 当W6事件到达, W1事件离开长度窗口被当做old event推送给监听器.
和长度窗口类似, 时间窗口(time window)还将最近的事件保持到给定的时间段. 比如:
select rstream * from Withdrawal#time(30 sec)
该语句将最近30秒内的Withdrawal事件保存在事件窗口中. 随着时间流逝, 事件窗口的事件会被推出, 并被当做old events推送给监听者.
示例代码
package com.bovenson.esper;
import com.espertech.esper.client.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class EsperInsertRemoveStreamLambda {
private static final Logger log = LoggerFactory.getLogger(EsperInsertRemoveStreamLambda.class);
public static void main(String args[]) {
EPServiceProvider engine = EPServiceProviderManager.getDefaultProvider();
engine.getEPAdministrator().getConfiguration().addEventType(Withdrawal.class);
String epl = String.format("select irstream * from %s#length(4)", Withdrawal.class.getName());
// String epl = "select * from Withdrawal.win:length(2)";
EPStatement statement = engine.getEPAdministrator().createEPL(epl);
// 添加 update listener
statement.addListener((EventBean[] newEvents, EventBean[] oldEvents) -> {
if (newEvents != null) {
// System.out.println("Length:" + newEvents.length);
String name = (String) newEvents[0].get("name");
int amount = (int) newEvents[0].get("amount");
System.out.println(String.format("newEvents info - Name: %s, Amount: %d", name, amount));
} else {
System.out.println("newEvents is null.");
}
if (oldEvents != null) {
String name = (String) oldEvents[0].get("name");
int amount = (int) oldEvents[0].get("amount");
System.out.println(String.format("oldEvents info - Name: %s, Amount: %d", name, amount));
} else {
System.out.println("oldEvents is null.");
}
});
// 发送事件
EPRuntime runtime = engine.getEPRuntime();
runtime.sendEvent(new Withdrawal("W1", 500));
runtime.sendEvent(new Withdrawal("W2", 100));
runtime.sendEvent(new Withdrawal("W3", 200));
runtime.sendEvent(new Withdrawal("W4", 300));
runtime.sendEvent(new Withdrawal("W5", 50));
runtime.sendEvent(new Withdrawal("W6", 150));
}
}
输出:
newEvents info - Name: W1, Amount: 500
oldEvents is null.
newEvents info - Name: W2, Amount: 100
oldEvents is null.
newEvents info - Name: W3, Amount: 200
oldEvents is null.
newEvents info - Name: W4, Amount: 300
oldEvents is null.
newEvents info - Name: W5, Amount: 50
oldEvents info - Name: W1, Amount: 500
newEvents info - Name: W6, Amount: 150
oldEvents info - Name: W2, Amount: 100
Filters and Where-clauses
事件流过滤器允许在事件进入数据窗口之前, 对给定的流进行过滤. 下面的语句是一个选择amount>=200的Withdrawal事件的过滤器.
select * from Withdrawal(amount >= 200)#length(5)
利用这个过滤器, 任何amount小于200的Withdrawal事件都不会进入长度窗口, 也因此不会推送给更新监听器.
示例代码
package com.bovenson.esper.example;
import com.bovenson.esper.Withdrawal;
import com.espertech.esper.client.*;
public class EsperFilterExample {
public static void main(String args[]) {
EPServiceProvider engine = EPServiceProviderManager.getDefaultProvider();
engine.getEPAdministrator().getConfiguration().addEventType(Withdrawal.class);
String epl = String.format("select irstream * from %s(amount >= 200)", Withdrawal.class.getName());
EPStatement statement = engine.getEPAdministrator().createEPL(epl);
// 添加 update listener
statement.addListener((EventBean[] newEvents, EventBean[] oldEvents) -> {
if (newEvents != null) {
String name = (String) newEvents[0].get("name");
int amount = (int) newEvents[0].get("amount");
System.out.println(String.format("newEvents info - Name: %s, Amount: %d", name, amount));
} else {
System.out.println("newEvents is null.");
}
if (oldEvents != null) {
String name = (String) oldEvents[0].get("name");
int amount = (int) oldEvents[0].get("amount");
System.out.println(String.format("oldEvents info - Name: %s, Amount: %d", name, amount));
} else {
System.out.println("oldEvents is null.");
}
System.out.println("**********************************");
});
// 发送事件
EPRuntime runtime = engine.getEPRuntime();
runtime.sendEvent(new Withdrawal("W1", 500));
runtime.sendEvent(new Withdrawal("W2", 100));
runtime.sendEvent(new Withdrawal("W3", 200));
runtime.sendEvent(new Withdrawal("W4", 300));
runtime.sendEvent(new Withdrawal("W5", 50));
runtime.sendEvent(new Withdrawal("W6", 150));
}
}
输出:
newEvents info - Name: W1, Amount: 500
oldEvents is null.
**********************************
newEvents info - Name: W3, Amount: 200
oldEvents is null.
**********************************
newEvents info - Name: W4, Amount: 300
oldEvents is null.
**********************************
EPL语句中的where子句和having子句, 在更晚的阶段对数据进行过滤, 在此之前, 事件已经到达了数据窗口或其他视图.
下面的语句是使用where子句的示例.
select * from WithDrawal#length(5) where amount >= 200
where子句同时适用于new events 和 old events. 新事件到达时(new events), 只有满足where子句, 事件才会被推送个更新监听器; 当事件(old events)离开数据窗口时, 只有满足where子句的事件, 才会推送给更新监听器.
Time Windows
Time Windows
事件窗口是一个移动的窗口, 基于系统时间扩展特定的时间间隔到刚刚过去的时间. 时间窗口允许我们限制事件的数量.
有这样一个需求: 确定最后4秒提款的每个帐户的平均提款量大于1000的所有帐户, 实现的语句可以这样写:
select account, avg(amount)
from Withdrawal#time(4 sec)
group by account
having amount > 1000
下面的图, 展示了select irstream * from Withdrawal#time(4 sec)
的过程.
Time Batch
Time Batch view (批时间处理视图) 缓存事件, 并以一定的时间间隔释放在一个更新中.
简单语句 select * from Withdrawal#time_batch(4 sec)
图示如下:
Batch windows
批处理窗口.
对事件进行分组的内置数据窗口是win:time_batch和win:length_batch视图等。
win:time_batch数据窗口收集在给定时间间隔内到达的事件,并在时间间隔结束时将收集的事件作为批处理发送给侦听器。
win:length_batch数据窗口收集给定数量的事件,并在收集给定数量的事件时将收集的事件作为批处理发送给侦听器。
以包含时间窗口的语句: select account, amount from Withdrawal#time_batch(1 sec)
为例: 该语句收集一秒钟内到达的事件, 在一秒结束时Esper引擎把收集到的事件作为new events(insert stream)推送给监听器, 同时把上个时间间隔收集到的事件作为old events(remove stream)推送给监听器.
对于包含聚合函数或者group by子句的语句, Esper引擎把每个分组统一的聚合结果推送给监听器. 例如:
select sum(amount) as mysum from Withdrawal#time_batch(1 sec)
Aggregation and Grouping
聚合及分组.
Insert and Remove Stream
Terms(术语)